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Introduction

Consider solving large sparse linear system Au = b with Gaussian
elimination: A = LU

Deliver reliable solution, error bounds, condition estimation, efficient for
many RHS, . . .

Complexity wall ... not linear time
[George ’73] For model problems, (exact) sparse LU with best ordering
Nested Dissection gives optimal complexity:

I 2D (kxk = n grids): O(n log n) Fill, O(n3/2) Flops

Fill: adding up the dense submatrices of all the “+” separators:

k2 + 4
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)2
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4i
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2i

)2

= O(k2 log k)

Flops: dominated by cubic term of factorizing top-level separator: O(k3)
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Approximation

Exploit “data-sparseness” structure in separators
data-sparse: matrix may be dense, but has a compressed representation
smaller than N2

Low-rank matrices as basic building blocks

If B has exact rank at most k:
I Outer-product form: Bm×n = Um×kVT

k×n, k ≤ n
I Orthonormal outer-product form:

Bm×n = Um×kXk×kVT
k×n, UTU = VTV = Ik

If A has numerical low rank k (called ε-rank):
A = UΣVT ≈ Ak := UΣkVT , Σ = diag(σ1, . . . , σk, σk+1, . . . , σn)
Σk = diag(σ1, . . . , σk, 0, . . . , 0), with σk > ε

Algorithms:
truncated SVD
rank-revealing QR
randomized sampling, ...
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Approximations by LR matrices

Singular Value Decomposition (SVD)
A = UΣVT ≈ Ak := UΣkVT

Σ = diag(σ1, . . . , σk, σk+1, . . . , σn)
Σk = diag(σ1, . . . , σk, 0, . . . , 0)

I accuracy: ‖A− Ak‖2 = σk+1
I cost: O(m2n) (m ≤ n)

Rank-Revealing QR decomposition (RRQR)

AΠ = QR, R =

[
R11 R12
0 R22

]
, Π permutation matrix

Choose U = Q(:, 1 : k),V = Π[R11 R12]T

I accuracy: ‖A− UVT‖2 = ‖R22‖2 ≤ c σk+1
I cost: O(kmn) (m ≤ n, k ≈ m)
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LR Matrices (con’t)

Randomized sampling
1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

I accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

I cost: O(kmn)

Remarks
I Kernel: All have same asymptotic cost with explicit matrix

F RS can be faster when fast matrix-vector available
F RS useful when only matrix-vector available

I Putting in sparse solver: costs will be different ...
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Data-sparse representations
Hierarchical matrices: H-matrix,H2-matrix
[Bebendorf, Borm, Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, ...]

allow Fast matrix-vector multiplication, factorization, inversion, ...

H-matrix : Given a “suitable” partition P : I × J of row and column
dimensions, ranks of all blocks Ab ≤ k. (low-rank blocks chosen
independently from each other)

I Example [Bebendorf 2008]: Hilbert matrix
hij = 1

i+j−1 and the blockwise ranks:

I Flops of matrix-vector multiplication:
O(k(|I| log |I|+ |J| log |J|))

H2-matrix is a uniformH-matrix with nested cluster bases
I more restrictive but faster thanH-matrix
I Flops of matrix-vector multiplication: O(k(|I|+ |J|)) (algebraic

generalization of the Fast Multipole method)
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Data-sparse representations

(Hierarchically) Semi-Separable matrices
[Bini, Chandrasekaran, Dewilde, Eidelman, Gemignani, Gohberg, Gu, Kailath, Olshevsky, van

der Veen, Van Barel, Vandebril, White, et al.]

SS matrix: S = triu(UVT) + tril(WZT), where U,V,W, and Z are
rank-k matrices.

I Example: can be used to represent the inverse of a banded matrix
HSS matrix: the bases are required to be nested

I special case ofH2-matrix

Other low-rank factorization ideas:

BLR (Block LR) (Amestoy et al.)

MLR (Multilevel LR) (Saad et al.)
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Outline

How it works operationally?
I Hierarchical matrix representation, factorization
I HSS-embedded multifrontal factorization

F targeting at nonsymetric systems (with PDE behind)

Theory
I Schur monotonicity
I conditioning analysis
I rank analysis for discretized PDEs

Practice
I ordering within separator
I parallelization
I preconditioning

Summary
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
High-level structure: 2× 2 blocks

A =

[
D1 U1B1VT

1

U2B2VT
1 D2

]

Fundamental property required for efficiency: nested bases

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k

Same for U3, U6, V6 and recursively at subsequent levels.
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
Recursion

A =


D1 U1B1VT

2 U3B3VT
6U2B2VT

1 D2

U6B6VT
3

D4 U4B4VT
5

U5B5VT
4 D5
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Hierarchical bases, HSS tree

For efficiency, require:

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k, U6 =

[
U4 0
0 U5

]
Usmall

6 , Usmall
6 : 2k × k

U7 =

[
U3 0
0 U6

]
Usmall

7 , Usmall
7 : 2k × k

Each basis is a product of descendents’ bases:

U7 =


U1 0 0 0
0 U2 0 0
0 0 U4 0
0 0 0 U5

[ Usmall
3 0
0 Usmall

6

]
Usmall

7 ,

Not to multiply out!
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HSS explicit representation (construction)

[Martinsson]

keep it as an unevaluated product & sum

operations going up / down the HSS tree
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Structured factorization

HSS node :

( ) ≈ V( T̃r , T̃H
c )

2. Compl. basis with V⊥:
( V⊥ , V ) is unitary

3. Change basis:
D̃ = ( V⊥ , V )H ( V⊥ , V )

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃
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Structured factorization
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Structured factorization

D Tr

Tc

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
( Tr , TH

c ) ≈ V( T̃r , T̃H
c )

2. Compl. basis with V⊥:
( V⊥ , V ) is unitary

3. Change basis:
D̃ = ( V⊥ , V )H ( V⊥ , V )

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
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Structured factorization
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Structured factorization
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Structured factorization
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Structured factorization

T̃D T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 3:

5. Partially factorize:(
DL

Dc U

)(
DU Dr

I

)
=

(
T̃D T̃r

T̃c T̃U

)
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Embedding HSS in multifrontal

Approximate Frontal & Update matrices by HSS

Need following operations:

frontal HSS factorization of Fi

extend-add of two HSS update matrices Ui

and Uj

Final Cholesky factor: Classical vs HSS-embedded
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Theory

Schur monotonicity for approximate Cholesky factorization

conditioning analysis

rank analysis for discretized PDEs
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Schur monotonicity for approximate Cholesky A = RTR

R =


R1,1 R1,2 · · · R1,n

R2,2 · · · R2,n

. . .
...

Rn,n

, R ≈ R̃ =


R1 R̃1,2 · · · R̃1,n

R2 · · · R̃2,n

. . .
...

Rn


First approximation step: RT

1 R1 = A11 and H1 = D−T
1 A1,2:n

H1 =
(

U1 Û1

)(
Q1 Q̂1

)T
, HT

1 H1 = Q1QT
1 + Q̂1Q̂1eT , ‖Q̂1‖2 ≤ τ

Orthogonal dropping: H̃1 = U1Q1 −→ H̃T
1 (H1 − H̃1) = 0

Schur complement: A1 = A2:n,2:n − HT
1 H1 = A2:n,2:n −Q1QT

1 − Q̂1Q̂T
1 .

Approximate A1 by Ã1 = A2:n,2:n −Q1QT
1 = A1 + Q̂1Q̂T

1 = A1 + O
(
τ 2)

Nice Property: Successive Schur complements do not decrease in SPD sense
⇒ factorization is breakdown free

1. M. Gu, X.S. Li, P. Vassilevski, “Direction-Preserving and Schur-Monotonic Semiseparable Approximations of
Symmetric Positive Definite Matrices”, SIMAX, 31 (5), 2650-2664, 2010.

2. J. Xia, M. Gu, “Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices”,
SIMAX, 31 (5), 2899-2920, 2010.
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Conditioning analysis when RTR as preconditioner (Napov)

Goal: analyze spectral condition number κ(R−TAR−1)
Sketch: look at approximation after each step k of total l step; capture
different approximation order:

Bk =

(
R(k)

11
T

R̃(k)
12

T
S̃(k)

B

)(
R(k)

11 R̃(k)
12
I

)
, S̃(k)

B = Aik+1:n,ik+1:n − R̃
(k)
12

T
R̃(k)

12

SSS bound (sequential order):

κ(R−T AR−1) ≤
l∏

k=1

1 + γk

1− γk
, where γk = ‖(R(k)

12 − R̃
(k)
12 )S̃(k)

B
−1/2
‖ < 1

HSS bound: can be computed numerically using good estimates
γk estimate: γk ≤

∥∥∥(R(k)
12 − R̃

(k)
12

∥∥∥ ‖A−1‖1/2

I can estimate ‖A−1‖ with a few iterations of Conjugate Gradient

Adaptive threshold strategy based on γk estimate

A. Napov, “Conditioning analysis of incomplete Cholesky factorizations with
orthogonal dropping”, SIMAX, Vol. 34, No. 3, 1148-1173, 2013.
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Rank analysis for some PDEs

Consider n× m grid, lexicographical (layer-by-layer) order gives rise to block
tridiagonal matrix:

A =



A1,1 A1,2

A2,1 A2,2

. . .

. . .
. . . Am−1,m

Am,m−1 Am,m


, each n × n Schur compl. Si+1 = Ai,i − Ai,i−1S−1

i Ai,i−1

Model problem (Chandrasekaran et al.):
Ai,i = Aj,j,Ai−1,i = Aj−1,j,Ai,i−1 = Aj,j−1

In 2D, ε-rank of the off-diagonal Hankel block is constant, for n→∞
In 3D (k3), ε-rank of the strip Hankel block is bounded by O(k)

Helmholtz equations with constant velocity (Engquist,Ying):
look at the Green’s function of the Helmholtz operator.

In 2D (k2), ε-rank of the off-diagonal block bounded by O(log k)
In 3D (k3), O(k)

1. S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, “On the Numerical Rank of the Off-Diagonal Blocks
of Schur Complements of Discretized Elliptic PDEs”, SIMAX, 31 (5), 2261-2290, 2010.

2. B. Engquist, L. Ying, “Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation”,
Communications in Pure and Applied Mathematics 64 (2011).
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Complexity of HSS-embedded multifrontal factorization

With ND order, the intermediate Schur complements my have slightly
higher ranks, but no more than twice:

A =

A11 A33
A22 A23

A31 A32 A33

 , Schur compl. S = A33 − A31A−1
11 A13 − A32A−1

22 A32

Each contribution −A31A−1
11 A13 (or −A32A−1

22 A32) satisfies the
off-diagonal rank bound, together, the off-diagonal rank bound of S is at
most twice as that of layer-by-layer order.
Given the rank bounds, can show the following cost of the HSS-MF
factorization algorithm:

Problem r MF HSS-MF
flops fill flops fill

2D Elliptic O(1)
O(n3/2) O(n log n) O(n log n) O(n log log n)

(k2) Helmholtz O(log k)
3D Elliptic O(k)

O(n2) O(n4/3) O(n4/3 log n) O(n log n)
(k3) Helmholtz O(k)

J. Xia, “Efficient structured multifrontal factorization for general large sparse
matrices”, SISC, 35 (2), A832-A860, 2012.

Warning: The constant prefactor may be large: ∼ O(100s) (∼ 10 for classical)
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Practice

ordering within separator

parallelization

preconditioning
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Separator ordering: vertex-based vs edge-based

{
{

Vertex-based approach:

Edge-based approach: {
{

HSS leaf 1

HSS leaf 2

HSS leaf 1

HSS leaf 2

1 2

1
2

1 2

1

2

2D separator from a 3D domain.

2D separator from a 3D domain.

Frontal matrix.

Frontal matrix.

{Fully-summed
variables
(separator)

CB

{Fully-summed 
variables
(separator)

CB{

{

An edge-based ordering allows us to simply match parts of the separators with nodes
of the HSS tree. 20 / 47



Ordering of separators: shape

In order to ensure some kind of admissibility condition, parts should have a
small diameter.

Large diameters. Small diameters.

For simplicity, we divide the separator into square blocks (chessboard).
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Ordering of separators: ordering of blocks

In the HSS compression stage, blocks are merged two-by-two following a tree
flow. Merged blocks should also have small diameter, thus the partioning
should have some recursive property.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 5 6

3 4 7 8

9 10 13 14

10 11 15 16

Leaf level.

We use an edge-based Nested Dissection (we cut the domain into squares, and
order these squares using ND/Morton ordering).
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Ordering of separators: ordering of blocks

In the HSS compression stage, blocks are merged two-by-two following a tree
flow. Merged blocks should also have small diameter, thus the partioning
should have some recursive property.

1+2+3+4

5+6+7+8

9+10+11+12

13+14+15+16

1+2+3+4 5+6+7+8

9+10+11+12 13+14+15+16

Two levels above leaves: blocks are merged four-by-four.

We use an edge-based Nested Dissection (we cut the domain into squares, and
order these squares using ND/Morton ordering).
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Results - topmost separator

Topmost separator of a 2003 domain (200× 200 plane). We compare:
VND: vertex-based ND.

Nat: square blocks ordering in natural/lexicographic order.
END: edge-based ND: square blocks ordered in ND.

VND Nat END
Total HSS time (s) 55.0 51.8 32.3
Max rank 731 893 646
Min time in RRQR (s) 15.2 20.3 11.0
Max time in RRQR (s) 53.0 50.2 30.7

Ranks at the top of HSS trees:
/

483

562 558

475

603 481

VND.

/

437

441 878

436

875 440

Nat.

/

450

413 540

451

607 467

END.

END yields lower rank and better balance of ranks.
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Results - complete problem

Helmholtz equations with PML boundary(
−∆− ω

v(x)2

)
u(x, ω) = s(x, ω)

On the complete problem, with 256 cores and HSS compression at the 8
topmost levels of the tree:

VND Nat END
Total factorization time (s) 984.8 978.5 938.0
Max rank 865 893 868
Min time in RRQR (s) 304.8 322.1 310.9
Max time in RRQR (s) 674.9 683.8 654.7

END: marginal ( 5%) improvement in run time but better workload balance,
so hopefully more potential for strong scaling.

24 / 47



Parallelization: two types of tree-based parallelism

Outer tree: separator tree for multifrontal factorization

Inner tree: HSS tree at each internal separator node

1 2

3

4 5

6

7

8

10 13

12119

14

15

16

21

22

23 24

25

26 27

28

30

17

31

29

19

18

20

parallel multifrontal tree

switch
level

parallel
level

HSS trees

0 1 2 3

10 32

32
10
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Parallelization strategy for HSS

Work along the HSS tree level-wise, bottom up.
2D block-cyclic distribution at each tree node (#Levels = log P)

I each Pi works on the bottom level leaf node i
I every 2 processes cooperate on a Level 2 node
I every 4 processes cooperate on a Level 3 node

Level 1: local Fi = UiF̃i
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Parallel row compression (cont)
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Summary of parallel row compression & complexity

Each step involves RRQR and redistribution
I pairwise exchange

Flop count: O( r N2

P )

Communication in row compression:
#msg = O(r log2 P)
#words = O(r N log P)
(assume no overlap between comm. and comp.)

Arithmetic Intensity: O( N
P log P)

(c.f. ScaLAPACK dense LU: O( N√
P

) )
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Parallel test

Cray XE6 (hopper at NERSC)

Example: Helmholtz equation with PML boundary(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω), (1)

∆: Laplacian
ω: angular frequency
v(x): seismic velocity field
u(x, ω): time-harmonic wavefield solution

FD discretized linear system:
I Complex, pattern-symmetric, non-Hermitian,
I Indefinite, ill-conditioned
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Parallel HSS performance

HSS constrcution on the last Schur complement corresp. to the top
separator.

Performance ratio of LU over HSS:

(a) 2D, max_rank=7 (b) 3D, max_rank=848

S. Wang, X.S. Li, J. Xia, and M.V. de Hoop, “Efficient scalable algorithms for solving
linear systems with hierarchically semiseparable matrices”, SISC, Nov. 2012. (revised)

30 / 47



Parallel HSS-MF performance
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(c) 2D Helmholtz, 10Hz
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(d) 3D Helmholtz, 5Hz

HSS-MF succeeded with 6003 on 16,384 cores, while MF failed.
S. Wang, X.S. Li, F.-H. Rouet, J. Xia, and M. de Hoop, “A Parallel Geometric
Multifrontal Solver Using Hierarchically Semiseparable Structure”, ACM TOMS, June
2013. (in submission)
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Sparse results - 2D problems

2D Helmholtz problems on square grids (mesh size k, N = k2), 10 Hz.

k 10,000 20,000 40,000 80,000

P 64 256 1,024 4,096

MF

Factorization (s) 258.6 544.8 1175.8 2288.5

Gflops/s 507.3 2109.3 8185.6 31706.9

Solution+refinement (s) 10.4 10.8 11.5 11.6

Factors size (GB) 120.1 526.7 2291.2 9903.7

Max. peak (GB) 2.3 2.5 2.7 2.9

Communication volume (GB) 136.2 1202.5 9908.1 79648.4

HSS

HSS+ULV (s) 97.9 172.5 325.3 659.3

Gflops/s 196.9 715.6 2820.7 9820.6

Solution+refinement (s) 20.2 55.4 61.4 115.8

Steps 3 3 9 9

Factors size (GB) 66.2 267.7 1333.2 4572.3

Max. peak (GB) 1.7 1.7 1.7 1.7

Communication volume (GB) 74.2 573.8 4393.4 41955.8

HSS rank 258 503 1013 2015

||x− xMF||/||xMF|| 1.5× 10−5 2.2× 10−5 3.1× 10−5 3.5× 10−6

maxi
|Ax−b|i

(|A||x|+|b|)i
7.1× 10−6 1.0× 10−5 2.0× 10−6 3.5× 10−6
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Results - 3D problems

3D Helmholtz problems on cubic grids (mesh size k, N = k3), 5 Hz.

k 100 200 300 400

P 64 256 1,024 4,096

MF

Factorization (s) 88.4 1528.0 1175.8 6371.6

Gflops/s 600.6 2275.7 9505.6 35477.3

Solution+refinement (s) 0.6 2.2 3.5 4.8

Factors size (GB) 16.6 280.0 1450.1 4636.1

Max. peak (GB) 0.5 1.9 2.5 2.0

Communication volume (GB) 83.1 2724.7 26867.8 165299.3

HSS

HSS+ULV (s) 120.4 1061.3 2233.8 3676.5

Gflops/s 207.8 720.4 2576.6 6494.8

Solution+refinement (s) 2.3 8.2 31.5 182.8

Steps 4 5 10 6

Factors size (GB) 10.7 112.9 434.3 845.3

Max. peak (GB) 0.5 1.7 2.1 0.4

Communication volume (GB) 93.6 2241.2 18621.1 143300.0

HSS rank 481 925 1391 1860

||x− xMF||/||xMF|| 6.2× 10−6 9.4× 10−7 1.1× 10−6 1.7× 10−6

maxi
|Ax−b|i

(|A||x|+|b|)i
1.5× 10−7 5.7× 10−7 9.7× 10−7 3.7× 10−6
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Preconditioning results

Test matrices: 2D & 3D
I model problems
I convection-diffusion: constant coefficient, variable coefficient
I curl-curl edge elements (Nedelec elements)
I Helmholtz
I general matrices

RHS = (1, 1, . . .)T

GMRES(30)
I right preconditioner
I initial x0 = (0, 0, . . .)T

I stopping criterion: ‖rk‖2
‖b‖2
≤ 10−6
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Convection-diffusion

−ν∆u + v · ∇ u = b on Ω .
v = ...

r constant coeff. variable coeff.
2D (1/

√
2 1/

√
2) ( x(1− x)(2y− 1) y(1− y)(2x− 1) )

3D (1/2 1/2 1/
√

2) ( x(1− x)(2y− 1)z y(y− 1)(2x− 1) (2x− 1)(2y− 1)z(z− 1) )
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Convection−diffusion: variable coeff.
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Curl-curl edge element (Nedelec element)

∇×∇× u + β = b on Ω
τ = 10−8

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt

tt
tt

tt
tt

tt
tt

tt
tt

mesh size HSS-rank fill-ratio factor (s) Its GMRES (s)
5002 59 14.8e 5.8 2 0.5

10002 52 14.9 25.0 3 3.3
20002 60 14.9 106.1 3 13.3
30002 50 14.4 114.6 5 48.7

203 388 78.9 6.7 2 0.1
403 824 125.6 261.5 3 1.7
603 804 156.1 2055.8 3 7.4

36 / 47



Helmholtz(
−∆− ω

v(x)2

)
u(x, ω) = s(x, ω)

τ = 10−4

mesh size HSS-rank fill-ratio factor (s) Its GMRES (s)
5002 85 8.8 8.6 4 1.6

10002 210 9.5 53.1 4 6.5
20002 229 9.7 307.1 71 500.1
30002 380 10.0 950.2 139 2464.1

203 275 13.3 2.4 3 0.1
403 533 27.0 151.9 3 1.1
603 1039 38.8 1434.6 3 5.3
803 1167 47.3 7708.1 3 16.8
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Model problems: ∆u = f

Compare to ILU in SuperLU (Li/Shao 10)
I supernode-based ILUTP, threshold, partial pivoting
I 10−4 for HSS trunction, and ILU threshold
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General matrices

HSS- Fill-ratio Factor (s) Its
Matr. Descr. N rank HSS ILU HSS ILU HSS ILU
add32 circuit 4,690 0 2.1 1.3 0.01 0.01 1 2
mchln85ks17 car tire 84,180 948 13.5 12.3 133.8 216.1 4 39
mhd500 plasma 250,000 100 11.6 15.6 2.5 7.9 2 8
poli_large economic 15,575 64 4.8 1.6 0.04 0.02 1 2
stomach bio eng. 213,360 92 12.1 2.9 13.8 18.7 2 2
tdr190k accelerator 1,100242 596 14.1 – 629.2 – 7 –
torso3 bio eng. 259,156 136 22.6 2.4 86.7 63.7 2 2
utm5940 TOKAMAK 5,940 123 6.7 8.0 0.1 0.16 3 15
wang4 device 26,068 385 45.3 23.1 4.4 6.4 3 4
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HSS truncation tolerance

tdr190k – Maxwell equations in frequency domain, eigenvalue problem
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Summary

More theory has been developed
In practice: very promising for large problems, large machines

I demonstrated that it is implementable in parallel, with reduced
communication

Compare to ILU preconditioner
I breakdown free
I More parallel
I Dropping operation may be more expensive (row/col vs. entry-wise in

ILU)
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Future work

Parallel low-rank factorization using randomized sampling
Analyze communication lower bound for HSS-structured sparse
factorization

I Classical sparse Cholesky (Gupta et al.’97):
3D model problem: O( N4/3

√
P

) COMM-Volume

Black-box preconditioner?
I Apply to broader simulation problems: accelerator, fusion, etc.
I compare to other preconditioners, e.g., ILU, multigrid

Precondition the Communication-Avoiding Krylov algorithms [with

Demmel’s group]

Compare to sparse solvers usingH-matrix [Weisbecker et al., Ying et al.]

Resilience at extreme scale
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Rank-revealing via randomized sampling

1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

cost: O(kmn)
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Randomized sampling simplies extend-add

HSS construction via RS [Martinsson’11]
I SRRQR repeatedly applied to matrices with reduced column dimention

Multifrontal HSS via RS
1 Compress frontal Fi:

Form sample matrix Yi = FiXi, where Xi = (X(1)
i X(2)

i )T random,
Construct HSS of Fi with help of Yi

2 ULV factorize Fi(1, 1)
3 HSS approximation of Ui

4 Form sample matrix Zi = UiX
(2)
i , where X(2)

i is a submatrix of Xi

corresponding to Ui
5 extend-add of sample matrices to parent:

Yp ≡ FpXp = (ApXp)⊕ Zi ⊕ Zj

44 / 47



At Child
Compression of Fi

Partial elimination of Fi

Compute update matrix Ui: Ui = Fi(2, 2)− UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q
I fast low-rank update: obtain Ui generators directly from Fi(2, 2)

generators
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At Parent: extend-add of sample matrices from children

RS simplies extend-add: Yp ≡ FpXp = (ApXp)⊕ Zi ⊕ Zj
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Zi = UiX
(2)
i = Fi(2, 2)X(2)

i − UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

= Y(2)
i − UqBT

k UT
k X(1)

i − UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

= Y(2)
i − UqBT

k

[
UT

k X(1)
i + (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

]
46 / 47



References

M. Bebendorf, “Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems”, Lecture Notes in Computational Science and Engineering, Springer, 2008.

M. Gu, X.S. Li, P. Vassilevski, “Direction-Preserving and Schur-Monotonic Semiseparable
Approximations of Symmetric Positive Definite Matrices”, SIMAX, 31 (5), 2650-2664, 2010.

J. Xia, M. Gu, “Robust approximate Cholesky factorization of rank-structured symmetric positive
definite matrices”, SIMAX, 31 (5), 2899-2920, 2010.

J. Xia, “Efficient structured multifrontal factorization for general large sparse matrices”, SISC, 35
(2), A832-A860, 2012.

A. Napov, “Conditioning analysis of incomplete Cholesky factorizations with orthogonal dropping”,
to appear in SIMAX.

Martinsson, “A Fast Randomized Algorithm for Computing A Hierarchically Semiseparable
Representation of A Matrix”, SIMAX, Vol.32, No.4, 1251-1274, 2011.

S. Wang, X.S. Li, J. Xia, and M.V. de Hoop, “Efficient scalable algorithms for solving linear
systems with hierarchically semiseparable matrices”, SISC, Nov. 2012. (revised)

S. Wang, X.S. Li, F.-H. Rouet, J. Xia, and M. de Hoop, “A Parallel Geometric Multifrontal Solver
Using Hierarchically Semiseparable Structure”, ACM TOMS, June 2013. (in submission)

P.R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, C. Weisbecker, “Improving
Multifrontal Methods by Means of Block Low-Rank Representations”, SISC, submitted, 2012.
Tech report, RT/APO/12/6, ENSEEIHT, Toulouse, France.

47 / 47


